Спецификация

диагностической работы по физике для учащихся 11-х классов общеобразовательных учреждений г. Москвы

1. Назначение диагностической работы

Диагностическая работа проводится **9 декабря 2020 г.** с целью определения уровня подготовки учащихся 11-х классов по физике, позволяющего оценить степень их готовности к сдаче ЕГЭ.

2. Документы, определяющие содержание и характеристики диагностической работы

Содержание и основные характеристики диагностической работы определяются на основе следующих документов:

- Федеральный компонент государственного образовательного стандарта основного общего образования по физике (приказ Минобразования России от 05.03.2004 № 1089).
- Федеральный компонент государственного образовательного стандарта среднего (полного) общего образования, базовый и профильный уровни (приказ Минобразования России от 05.03.2004 № 1089).
- О сертификации качества педагогических тестовых материалов (приказ Минобразования России от 17.04.2000 № 1122).

3. Условия проведения диагностической работы

При организации и проведении работы необходимо строгое соблюдение технологии независимой диагностики.

Учащиеся могут воспользоваться непрограммируемым калькулятором (на каждого ученика) с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейкой.

Диагностическая работа проводится в бланковой форме. Ответы на задания учащиеся указывают сначала в тексте работы, а затем записывают в бланк тестирования.

4. Время выполнения работы

На выполнение работы отводится 90 минут.

5. Содержание и структура диагностической работы

Каждый вариант диагностической работы состоит из 24 заданий: 23 заданий с кратким ответом, 1 задания с развёрнутым ответом.

Содержание диагностической работы охватывает учебный материал курса физики 10-го и 11-го классов по темам «Механика», «Молекулярная физика и термодинамика» и «Электродинамика», за исключением тех тем, которые учащиеся могли не успеть пройти к 9 декабря 2020 г.

Распределение заданий диагностической работы по основным разделам содержания учебного предмета представлено в таблице 1.

Таблица 1

№	Разделы освоения учебного предмета		Число
п/п			заданий
1.	Механика		8
2.	Молекулярная физика и термодинамика		6
3.	Электродинамика		7
4.	Методы научного познания и элементы астрономии		3
		Итого	24

6. Система оценивания отдельных заданий и работы в целом

Задание с кратким ответом считается выполненным, если записанный в бланке ответ совпадает с верным ответом.

Задания 1-4, 8-10, 13-15, 19 и 20 и задания 22 и 23 оцениваются 1 баллом.

Задания 5–7, 11, 12, 16–18 и 21 оцениваются 2 баллами, если верно указаны оба элемента ответа; 1 баллом, если допущена ошибка в указании одного из элементов ответа, и 0 баллов, если допущены две ошибки.

Задание с развёрнутым ответом оценивается с учётом правильности и полноты ответа. Максимальный балл за задание с развёрнутым ответом составляет 3 балла. К каждому заданию приводится подробная инструкция, в которой указывается, за что выставляется каждый балл — от нуля до максимального балла.

Максимальный первичный балл – 35.

- В Приложении 1 приведён обобщённый план варианта диагностической работы.
- В Приложении 2 приведён демонстрационный вариант диагностической работы.

Обобщённый план варианта диагностической работы по физике для учащихся 11-х классов

Используются следующие условные обозначения:

Тип задания: КО – задания с кратким ответом, РО – задание с развёрнутым ответом.

№	Контролируемые элементы содержания	Макс. балл
1	Скорость, ускорение, равномерное прямолинейное движение, равноускоренное прямолинейное движение, движение по окружности	1
2	Законы Ньютона, закон всемирного тяготения, закон Гука, сила трения	1
3	Закон сохранения импульса, кинетическая и потенциальная энергии, работа и мощность силы, закон сохранения механической энергии	1
4	Условие равновесия твёрдого тела, закон Паскаля, сила Архимеда, математический и пружинный маятники, механические волны, звук	1
5	Механика (объяснение явлений; интерпретация результатов опытов, представленных в виде таблицы или графиков)	2
6	Механика (изменение физических величин в процессах)	2
7	Механика (установление соответствия между графиками и физическими величинами; между физическими величинами и формулами)	2
8	Связь между давлением и средней кинетической энергией, абсолютная температура, связь температуры со средней кинетической энергией, уравнение Менделеева – Клапейрона, изопроцессы	1
9	Работа в термодинамике, первый закон термодинамики, КПД тепловой машины	1
10	Относительная влажность воздуха, количество теплоты	1
11	МКТ, термодинамика (объяснение явлений; интерпретация результатов опытов, представленных в виде таблицы или графиков)	2
12	МКТ, термодинамика (изменение физических величин в процессах, установление соответствия между графиками и физическими величинами, между физическими величинами и формулами)	2
13	Принцип суперпозиции электрических полей, магнитное поле проводника с током, сила Ампера, сила Лоренца, правило Ленца (определение направления)	1
14	Закон Кулона, конденсатор, сила тока, закон Ома для участка цепи, последовательное и параллельное соединение проводников, работа и мощность тока, закон Джоуля – Ленца	1
15	Поток вектора магнитной индукции, закон электромагнитной индукции Фарадея, индуктивность, энергия магнитного поля катушки с током, колебательный контур	1
16	Электродинамика (объяснение явлений; интерпретация результатов опытов, представленных в виде таблицы или графиков)	2
17	Электродинамика (изменение физических величин в процессах)	2
18	Электродинамика (установление соответствия между графиками и физическими величинами, между физическими величинами и формулами)	2
19	Механика – электродинамика (методы научного познания)	1
20	Механика – электродинамика (методы научного познания)	1
21	Элементы астрофизики (Солнечная система)	2
22	Механика – электродинамика (расчётная задача)	1
23	Механика – электродинамика (расчётная задача)	1
24	Механика – электродинамика (расчётная задача)	3

Настоящий тесят является объектом ватерского права. Свободное и безволмеланое кепользование любых материалов, входящих в состав давного тесета, ограничено использованием в личных целях и допускается исключительно в некоммерческих целях. Парушение вышеухазанных положений вяляется нарушением авторских прав и всемей наступление гражданской, административной в уколовной ответственности в соответствии с законодательством Российской Федерации. В случае самостоятельного использования материалов теста ГАОУ ДПО МЦКО не песёт стветственности за уграту актуальности текста. © Московский Центр к рачества образования.

Демонстрационный вариант диагностической работы по физике для учащихся 11-х классов

Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы.

Десятичные приставки

Наимено-	Обозначе-	Множи-	Наимено-	Обозначе-	Множи-
вание	ние	тель	вание	ние	тель
гига	Γ	10 ⁹	санти	С	10^{-2}
мега	M	10^{6}	милли	M	10^{-3}
кило	К	10^{3}	микро	МК	10^{-6}
гекто	Г	10^{2}	нано	Н	10^{-9}
деци	Д	10^{-1}	пико	П	10^{-12}

$\pi = 3,14$
$g = 10 \text{ m/c}^2$
$G = 6,7 \cdot 10^{-11} \text{ H} \cdot \text{м}^2/\text{кг}^2$
$R = 8,31 \; \text{Дж/(моль · K)}$
$k = 1,38 \cdot 10^{-23}$ Дж/К
$N_{\rm A} = 6 \cdot 10^{23} \ {\rm моль}^{-1}$
$c = 3 \cdot 10^8 \text{ m/c}$
$k = \frac{1}{1} = 9 \cdot 10^9 \mathrm{H} \cdot \mathrm{m}^2 / \mathrm{K} \pi^2$
4πε
$e = 1,6 \cdot 10^{-19} \text{ Кл}$
$h = 6.6 \cdot 10^{-34} \text{Дж} \cdot \text{c}$

Соотношение между различными единицами		
температура	$0 \text{ K} = -273 ^{\circ}\text{C}$	
атомная единица массы	1 а.е.м. = $1,66 \cdot 10^{-27}$ кг	
1 атомная единица массы эквивалентна	931,5 МэВ	
1 электрон-вольт	$1 \ \mathrm{9B} = 1,6 \cdot 10^{-19} \ \mathrm{Дж}$	

Масса частиц	
электрона	$9,1\cdot10^{-31}\mathrm{KF}\approx5,5\cdot10^{-4}\mathrm{a.e.m.}$
протона	$1,673 \cdot 10^{-27} \text{ кг} \approx 1,007 \text{ a.e.м.}$
нейтрона	$1,675 \cdot 10^{-27}$ кг $\approx 1,008$ a.e.м.

Плотность		подсолнечного масла	900 кг/м ³
воды	$1\ 000\ \text{kg/m}^3$	алюминия	$2700 \ кг/м^3$
древесины (сосна)	$400 \ \text{кг/m}^3$	железа	$7\ 800\ кг/м^3$
керосина	800 кг/м ³	ртути	13 600 кг/м ³

Удельная	теплоёмкость				
воды	4,2·10 ³ Дж/(кг·К		алюминия	900	Дж/(кг-К)
льда	2,1·10 ³ Дж/(кг·К	\mathcal{L}	меди	380	Дж/(кг-К)
железа	460 Дж/(кг∙К	\mathcal{L}	чугуна	500	Дж/(кг-К)
свинца	130 Дж/(кг∙К	3)			
Удельная	теплота				
парообраз	вования воды	2,3·10 ⁶ Дж/кг			
плавления	я свинца	2,5·10 ⁴ Дж/кг	7		
плавления	я льда	3,3·10 ⁵ Дж/кг			

Молярная м	ласса				
азота		кг/моль	гелия		кг/моль
аргона		кг/моль	кислорода		кг/моль
водорода	$2 \cdot 10^{-3}$	кг/моль	лития		кг/моль
воздуха		кг/моль	неона		кг/моль
воды	18.10^{-3}	кг/моль	углекислого газа	44.10^{-3}	кг/моль

Удельное электрическое сопротивление, Ом			$\frac{\mathrm{Om}\cdot\mathrm{mm}^2}{\mathrm{m}}$	(при 20 °C)
серебро	0,016	никелин	0,4	
медь	0,017	нихром (спл	пав) 1,1	
алюминий	0,028	фехраль	1,2	
железо	0,10			

Нормальные условия: да	авление $10^5\Pi$ а, температ	ypa 0 °C

Настоящий теся задается объектом авторского права. Свобадное в безволиедное вепользование забых материалов, входящих в состав данного тескта, отраничено использованием в личных целях и допускается исключительно в негоммерческих целях. Нарушение вышеуказавных позожений является нарушением авторских прав в влечёт наступение гражданской, административной в уголовной ответственности в состояетствии с законодательством Рессийской Федерации. В случае самостоятельного использования материалов теста ТАОУ ДПО МЦКО и некеёт ответственности з уграту актуальности текста.

В случае самостоятельного использования материалов теста ТАОУ ДПО МЦКО и некеёт ответственности з уграту актуальности текста.

Московский целтр качества образованиях.

Ответы на задания 1–23 запишите в указанном месте в тесте, а затем впишите в бланк тестирования справа от номера задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с образцом. Единицы измерения физических величин писать не нужно.

1	Материальная точка начинает двигаться прямолинейно с постоянных ускорением вдоль оси Ox . График зависимости её координаты от времен $x = x(t)$ изображён на рисунке.
	-2 -1 0 1 2 t, c
	Определите проекцию ускорения этого тела на ось Ox .
	Otbet: $\underline{\hspace{1cm}}$ M/c^2 .
2	Сила трения, действующая на скользящие по горизонтально обледеневшей дороге стальные санки массой 8 кг, равна 16 Н. Како коэффициент трения скольжения стали по льду?
	Ответ:
3	Тело массой 0,1 кг вращается в горизонтальной плоскости на нит длиной 1 м. Чему равна работа силы тяжести за один оборот вращени тела?
	Ответ: Дж.
4	Шар плотностью 2,5 г/см ³ и объёмом 400 см ³ целиком опущен в воду Определите архимедову силу, действующую на шар.
	Ответ: Н.

- Ящик соскальзывает вниз по наклонной плоскости с постоянной скоростью. Система отсчёта, связанная с наклонной плоскостью, является инерциальной. Из приведённого ниже списка укажите два правильных утверждения. Обведите их номера.
 - 1) Равнодействующая всех сил, действующих на ящик, направлена в сторону движения ящика.
 - 2) Полная механическая энергия ящика уменьшается.
 - 3) Сила тяжести, действующая на ящик, совершает положительную работу.
 - 4) Сила трения, действующая на ящик, совершает положительную работу.
 - 5) Кинетическая энергия ящика увеличивается.

Обведённые цифры запишите в ответ.

Ответ:	

Запишите ответ в бланк без дополнительных знаков.

Мальчик бросил стальной шарик вверх под углом к горизонту. Пренебрегая сопротивлением воздуха, определите, как меняются по мере приближения к Земле полная механическая энергия шарика и модуль вертикальной составляющей его скорости.

Для каждой величины определите соответствующий характер изменения:

- 1) увеличивается
- 2) уменьшается
- 3) не изменяется

Запишите <u>в таблицу</u> выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Полная механическая энергия шарика	Модуль вертикальной составляющей скорости шарика

B бланк запишите ТОЛЬКО ЦИФРЫ в том порядке, в котором они идут в таблице, не разделяя их запятыми.

Материальная точка движется по окружности радиусом R с постоянной линейной скоростью υ .

Установите соответствие между физическими величинами, характеризующими движение точки, и формулами, по которым их можно рассчитать: для каждой позиции из первого столбца подберите соответствующую позицию из второго столбца, обозначенную цифрой.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- А) частота обращения
- Б) центростремительное ускорение

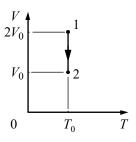
ФОРМУЛЫ

- 1) $\frac{\upsilon}{2\pi R}$
- $2) \quad \frac{v^2}{R}$
- 3) $\frac{2\pi R}{v}$
- 4) $\frac{v}{R}$

Запишите в таблицу выбранные цифры под соответствующими буквами.

	A	Б
Ответ:		

В бланк запишите ТОЛЬКО ЦИФРЫ в том порядке, в котором они идут в таблице, не разделяя их запятыми.

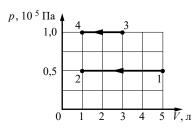

При повышении абсолютной температуры средняя кинетическая энергия хаотического теплового движения молекул разреженного одноатомного газа увеличилась в 4 раза. Конечная температура газа составила 1 200 К. Какова начальная температура газа?

OIBCIR
OIDCI.

На VT-диаграмме показан процесс изменения состояния постоянной массы идеального одноатомного газа, где V – объём газа, T – его абсолютная температура.

Работа, совершённая над газом в этом процессе, равна 60 кДж. Какое количество теплоты отдал газ в окружающую среду?

Ответ:	;	кДж
--------	---	-----



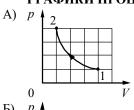
10	Концентраци	я молекул	воды	в возд	yxe	уменьшилась	В	4	раза	при
	неизменной	температуре	e. Bo	сколько	раз	уменьшилась	0	THO	сител	ьная
	влажность во	здуха?								

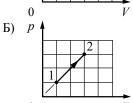
Ответ: в ______ раз(-а).

Ha *pV*-диаграмме показаны два процесса, проведённые с одним и тем же количеством газообразного аргона.

В приведённом ниже списке укажите два правильных утверждения, характеризующих процессы на графике. Обведите их номера.

- 1) Работа, совершённая внешними силами над аргоном, в процессах 1–2 и 3–4 одинакова.
- 2) В процессе 3–4 абсолютная температура аргона изобарно уменьшилась в 5 раз.
- 3) В процессе 1–2 давление аргона в 2 раза больше, чем в процессе 3–4.
- 4) В процессе 1–2 аргон изобарно увеличил свой объём на 4 л.
- 5) В процессе 1–2 внутренняя энергия аргона уменьшилась в 5 раз.

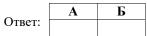

Обведённые цифры запишите в ответ.


Ответ: ______.

Запишите ответ в бланк без дополнительных знаков.

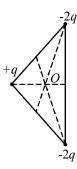
Установите соответствие между графиками процессов, в которых участвует 1 моль одноатомного идеального газа, и физическими величинами (ΔU — изменение внутренней энергии; A — работа газа), которые их характеризуют: для каждой позиции из первого столбца подберите соответствующую позицию из второго столбца, обозначенную цифрой.

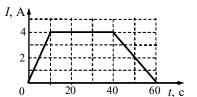
ГРАФИКИ ПРОЦЕССОВ



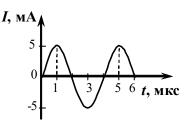
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- 1) $\Delta U = 0; \ A > 0$
- 2) $\Delta U > 0$: A > 0
- 3) $\Delta U > 0$; A = 0
- $\Delta U = 0; \ A < 0$

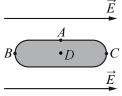

Запишите в таблицу выбранные цифры под соответствующими буквами.


В бланк запишите ТОЛЬКО ЦИФРЫ в том порядке, в котором они идут в таблице, не разделяя их запятыми.

В вершинах равнобедренного треугольника расположены точечные заряды -2q, +q и -2q (см. рисунок). Куда направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор напряжённости результирующего электростатического поля в точке O? Ответ запишите словом (словами).



14	На графике показана зависимость силы тока I в проводнике от времени t . Определите заряд, прошедший через
	проводник за $\Delta t = 60$ с с момента
	начала отсчёта времени.


Ответ:

рисунке приведён график І, мА зависимости силы тока I от времени t при свободных гармонических колебаниях в колебательном контуре. Каким станет период свободных колебаний силы тока в контуре, если конденсатор в этом контуре заменить на другой конденсатор, ёмкость которого в 4 раза меньше?

Ответ:

Металлическое тело, продольное сечение которого показано на рисунке, поместили в однородное электрическое поле напряжённостью \overrightarrow{E} .

Из приведённого ниже списка укажите два правильных утверждения, описывающих воздействия этого результаты поля металлическое тело. Обведите их номера.

- 1) Напряжённость электрического поля в точке C равна нулю.
- 2) Потенциал в точке A меньше, чем в точке D.
- 3) Концентрация свободных электронов в точке A наименьшая.
- 4) В точке С индуцируется положительный заряд.
- 5) В точке В индуцируется отрицательный заряд.

Обведённые цифры запишите в ответ.

Ответ:

Запишите ответ в бланк без дополнительных знаков.

α-частица движется по окружности в однородном магнитном поле между 17 полюсами магнита под действием силы Лоренца. После замены магнита по таким же траекториям стали двигаться протоны, обладающие той же скоростью. Как изменились индукция магнитного поля и модуль силы Лоренца?

Для каждой величины определите соответствующий характер изменения:

- увеличилась
- уменьшилась
- 3) не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Индукция	Модуль силы
магнитного поля	Лоренца

В бланк запишите ТОЛЬКО ЦИФРЫ в том порядке, в котором они идут в таблице, не разделяя их запятыми.

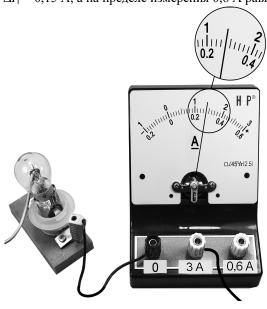
Идеальный колебательный контур состоит из конденсатора и катушки 18 индуктивностью 4 мГн. Заряд на пластинах конденсатора изменяется во времени в соответствии с формулой $q(t) = 2 \cdot 10^{-4} \cdot \cos(5000t)$ (все величины выражены в СИ).

Установите соответствие между физическими величинами и формулами, выражающими их зависимость от времени в условиях данной задачи.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ФОРМУЛЫ


- A) сила тока i(t) в колебательном контуре
- Б) энергия $W_{r}(t)$ магнитного поля катушки
- 1) $1 \cdot \cos(5000t + \frac{\pi}{2})$ 2) $20 \cdot \sin(5000t)$
- 3) $2 \cdot 10^{-3} \cdot \sin^2(5000t)$
- 4) $2 \cdot 10^{-3} \cdot \cos^2(5000t)$

Запишите в таблицу выбранные цифры под соответствующими буквами.

В бланк запишите ТОЛЬКО ЦИФРЫ в том порядке, в котором они идут в таблице, не разделяя их запятыми.

Какова сила тока в лампочке (см. рисунок), если погрешность прямого 19 измерения силы тока амперметром на пределе измерения ЗА равна $\Delta I_1 = 0.15 \text{ A}$, а на пределе измерения 0,6 A равна $\Delta I_2 = 0.03 \text{ A}$?

Ответ: (+) A.
O I DCI. (<i>,</i> , , , , ,

В бланк запишите ТОЛЬКО ЧИСЛА, не разделяя их запятыми и другими знаками.

Необходимо при помощи нитяного маятника экспериментально определить ускорение свободного падения. Для этого школьник взял штатив с муфтой и лапкой, нить и секундомер.

Какие два предмета из приведённого ниже перечня необходимо дополнительно использовать для проведения этого эксперимента? Обведите номера верных ответов.

- 1) электронные весы
- 2) динамометр
- 3) стальной шарик
- 4) линейка 5) мензурка

Обведённые цифры запишите в ответ.

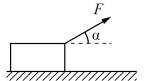
Ответ:

Запишите ответ в бланк без дополнительных знаков.

Рассмотрите таблицу, содержащую характеристики некоторых спутников 21 планет Солнечной системы.

Название спутника	Радиус спутника, км	Радиус орбиты, тыс. км	Вторая космическая скорость, м/с	Планета
Луна	1 737	384,4	2 400	Земля
Фобос	~12	9,38	11	Mapc
Ио	1 821	421,6	2 560	Юпитер
Европа	1 561	670,9	2 025	Юпитер
Каллисто	2 410	1 883	2 445	Юпитер
Титан	2 575	1 221,8	2 640	Сатурн
Оберон	761	583,5	725	Уран
Тритон	1 354	354,8	1 438	Нептун

Укажите номера всех верных утверждений. Обведите их номера


- 1) Первая космическая скорость для Каллисто составляет примерно 3,45 km/c.
- 2) Ускорение свободного падения на Титане примерно $1,35 \text{ м/c}^2$.
- 3) Объём Ио в 3 раза больше объёма Оберона.
- 4) Объём Титана меньше объёма Луны.
- 5) Европа находится дальше от поверхности Юпитера, чем Ио.

Обведённые цифры запишите в ответ.

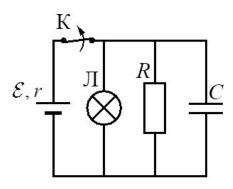
Ответ:		

Запишите ответ в бланк без дополнительных знаков.

Брусок массой 1,0 кг движется по горизонтальной прямолинейно плоскости c постоянным ускорением 2 м/ c^2 под действием силы \overrightarrow{F} , равной 5 H, направленной вверх под углом $\alpha = 30^{\circ}$ к горизонту (см. рисунок).

Определите коэффициент трения бруска о плоскость. Ответ округлите до десятых.

O		
Ответ:		


23	В стакан калориметра, содержащий воду массой m , опустили кусок льда массой $56\mathrm{r}$, имевший температуру $0\mathrm{^{\circ}C}$. Начальная температура
	калориметра и воды 45 °C. В момент времени, когда наступило тепловое
	равновесие, температура воды и калориметра стала равной 5 °C. Чему
	равна масса воды <i>m</i> ? Теплоёмкостью калориметра пренебречь.

Γ.
Γ.

Не забудьте перенести все ответы в бланк тестирования!

При выполнении задания 24 используйте обратную сторону бланка тестирования. Запишите сначала номер задания, а затем ответ на него. Полный ответ должен включать не только ответ на вопрос, но и его развёрнутое решение.

К аккумулятору с ЭДС 40 В и внутренним сопротивлением 2 Ом подключили лампу сопротивлением 10 Ом и резистор сопротивлением 15 Ом, а также конденсатор ёмкостью 200 мкФ (см. рисунок).

Спустя длительный промежуток времени ключ К размыкают. Какое количество теплоты выделится после этого на резисторе?

Ответы для заданий с кратким ответом

Номер задания	Ответ	Балл
1	1	1
2	0,2	1
3	0	1
4	4	1
5	23;32	2
6	31	2
7	12	2
8	300	1
9	60	1
10	4	1
11	15;51	2
12	43	2
13	вправо	1
14	180	1
15	2	1
16	45;54	2
17	22	2 2
18	13	2
19	1,400,15	
20	34;43	1
21	25;52	2
22	0,3	1
23	117	1

Настоящий текст является объектом авторского права. Свободное и безвозмездное использование любых материалов, входящих в состав данного текста,

настоящим так и высосно от ориги-техности о ориги-техности о правительно в некоммерстик песиях неутмент выполнения делях и долуги-техности в некоммерстик неизк. Нарушение выпеухазанных положений вызачегом нарушением авторских правительно в некоммерстик неизк. Нарушение выпеухазанных положений вызачегом нарушением авторских правительного в соответствии с законодательством Российской Федерации.
В случае самостоятельного в песинольнования материалов техт Га ОУ ДПО МЦКО в нееб от петственности з уграту вытуальности техта.

© Московский центр качества образования.

Критерии оценивания задания с развёрнутым ответом

Возможное решение

До размыкания ключа электрический ток протекает через параллельно соединённые лампу и резистор. Общее сопротивление внешней цепи равно

$$R_0 = \frac{R_1 R_2}{R_1 + R_2} = \frac{10.15}{10 + 15} = 6$$
 Ом, где R_1 – сопротивление лампы, R_2 –

сопротивление резистора. Согласно закону Ома для полной цепи $I = \frac{\mathcal{E}}{R_0 + r} = \frac{40}{6 + 2} = 5 \quad \text{А.} \quad \text{При этом напряжение на конденсаторе равно}$

 $U = IR_0 = 5 \cdot 6 = 30\,$ В. Таким образом, до размыкания ключа в конденсаторе

была накоплена энергия
$$W = \frac{CU^2}{2} = \frac{2 \cdot 10^{-4} \cdot 900}{2} = 90 \cdot 10^{-3}$$
 Дж = 90 мДж.

После размыкания ключа вся энергия, накопленная в конденсаторе, будет выделяться на параллельно включённых лампе и резисторе. Согласно закону Джоуля — Ленца, количество теплоты, выделяющееся в промежуток времени Δt , обратно пропорционально сопротивлению, поскольку напряжение u на лампе и резисторе в любой момент времени одно и то же:

$$Q_1 = \frac{u^2}{R_1} \Delta t \,, \; Q_2 = \frac{u^2}{R_2} \Delta t \; \Rightarrow \; \frac{Q_2}{Q_1} = \frac{R_1}{R_2} \; \text{if} \; W = Q_1 + Q_2 \,.$$

Окончательно получим для количества теплоты, выделившегося на

резисторе:
$$Q_2 = \frac{WR_1}{R_1 + R_2} = \frac{90 \cdot 10^{-3} \cdot 10}{10 + 15} = 36 \cdot 10^{-3} = 36 \text{ мДж.}$$

Ответ: $Q_2 = 36$ мДж.

z_2	
Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: формула расчёта	
сопротивления параллельно соединённых элементов цепи, законы	
Ома для полной цепи и участка цепи, формула энергии	
заряженного конденсатора, закон Джоуля – Ленца);	
ІІ) описаны все вновь вводимые в решении буквенные	
обозначения физических величин (за исключением обозначений	
констант, указанных в варианте КИМ, обозначений,	
используемых в условии задачи, и стандартных обозначений	
величин, используемых при написании физических законов);	
III) проведены необходимые математические преобразования	
и расчёты, приводящие к правильному числовому ответу	
(допускается решение «по частям» с промежуточными	
вычислениями);	

Настоящий тесят является объектом авторского права. Свободное и бенозмедное использование любом житерналов, водених в осегав давного текста, ограничено использованием в личных целях и допускается исключительно в некоммерческих пелях. Нарушение выперахазиных положений является нарушением авторских прав и влечёт наступление гражданской, административной и уголовной ответственности в соответствии с законодательством Российской Федерации. В случае самостоятельного использовании матерналов теста ГАОУ ДПО МЦКО не несёт ответственности за утрату актуальности текста. Московский Центр качества образования.

IV) представлен правильный ответ с указанием единиц измерения	
искомой величины.	
Правильно записаны все необходимые положения теории,	2
физические законы, закономерности, и проведены необходимые	
преобразования. Но имеются один или несколько из следующих	
недостатков.	
Записи, соответствующие пункту II, представлены не в полном	
объёме или отсутствуют.	
И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение	
(возможно, неверные), которые не отделены от решения и не	
зачёркнуты.	
И (ИЛИ)	
В необходимых математических преобразованиях или	
вычислениях допущены ошибки, и (или) в математических	
преобразованиях/вычислениях пропущены логически важные	
шаги.	
И (ИЛИ)	
Отсутствует пункт IV, или в нём допущена ошибка.	
Представлены записи, соответствующие одному из следующих	1
случаев.	1
l '	
Представлены только положения и формулы, выражающие физические законы, применение которых необходимо и	
достаточно для решения данной задачи, без каких-либо	
преобразований с их использованием, направленных на решение	
задачи. ИЛИ	
В решении отсутствует ОДНА из исходных формул, необходимая	
для решения данной задачи (или утверждение, лежащее в основе	
решения), но присутствуют логически верные преобразования	
с имеющимися формулами, направленные на решение задачи. ИЛИ	
.,	
В ОДНОЙ из исходных формул, необходимых для решения	
данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные	
преобразования с имеющимися формулами, направленные на	
решение задачи.	0
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла.	2
Максимальный балл	3